
Parallelization of Depth-First Traversal using
Efficient Load Balancing

VSN Harish Rayasam*
IIT Madras, India

rayasam@cse.iitm.ac.in

Rupesh Nasre
IIT Madras, India

rupesh@cse.iitm.ac.in

Abstract—Graphs have widespread use in almost every
field of study. Recent advances have parallelized sev-
eral important graph algorithms such as computing the
shortest paths, community detection, etc. However, simple
depth-first traversal (DFT) is considered to be challenging
for effective parallelization. Theoretically, DFT has been
proven to be inherently sequential. This poses practical
restrictions in implementing algorithms and applications
that are naturally based on DFT. In this work, we propose
a new method for depth-first traversal, which is amenable
to high degree of parallelism. Unlike existing techniques,
the algorithm provides good load balancing across workers
by fair work-division across threads of a multi-core system.

I. INTRODUCTION

Graph traversal is a systematic way to visit vertices in
a graph and is a fundamental component in constructing
many graph algorithms like identifying paths between
two vertices, finding connected components, computing
reachability, etc. The parallelization of these algorithms
is critically dependent on effectively parallelizing the
traversal. Breadth-first traversal has been explored both
theoretically and experimentally, and has been shown to
exhibit a good degree of parallelism (depending upon
the graph structure). However, depth-first traversal (DFS)
poses challenges, as it is not naturally amenable to
divide-and-conquer regime. In fact, theoretically, DFS
has been shown to be inherently sequential [1].

Reif [1] has shown that DFS is P-complete, suggesting
that DFS is difficult to parallelize. There are solutions for
certain special instances of the problem, for example,
in planar graphs [2], but in the general case, DFS
continues to be challenging: the best known algorithm is
randomized and requires O(log7(n)) parallel time using
O(n2.376) processors [3], which is far from being work
efficient. The primary difficulty in parallelizing DFS
is the ordering property that requires visiting the out-
edges of a vertex in order. In many applications, such as

reachability, graph search, and garbage collection [4], or-
dering is not necessary. Parallel DFS algorithms [3], [5],
[6], [7] can be asymptotically work efficient, performing
O(|V | + |E|) work, where |V | and |E| are the number
of vertices and edges respectively, when ignoring load
balancing and scheduling costs. However, when the cost
of scheduling operations is included in the analysis, all
the known algorithms can incur large overheads.

In this paper we present a way of parallelizing Depth
First Traversal (DFS) using simple and efficient load
balancing scheme with small overheads in terms of
scheduling and improve its running time on undirected
graphs. Central to our technique lies a vertex labeling
scheme that assigns an integral identifier to each graph
vertex (which is different from the unique vertex id).
We partition the graph evenly across available threads
for traversal, and using the labeling, compute the DFS
numbers for each vertex. The across-thread partitioning
of the graph provides an almost perfect initial load-
balancing. As the algorithm progresses, label-merging
may alter the balance. Arbitrary graph structures such
as cycles pose challenges for correct, yet load-balanced
DFS. As long as the parallelism benefits in the initial
phase outperform the imbalance overheads in the later
part of the algorithm, we expect benefits out of our
proposed scheme (which we observe to be significant
on real-world graphs).

In particular, we make the following contributions.
• We propose a new divide-and-conquer technique for

depth-first traversal of undirected graphs. We use a
new vertex labeling and merging in an effective way
to compute the final DFS number of each vertex.

• We show that the modified parallel DFS can be used
in several applications including finding connected
components and satisfying reachability queries.

• Using a set of real-world and synthetic graphs from
SNAP [8], we illustrate the effectiveness of our
approach. Our parallel DFS offers speedup ranging

Algorithm 1 DFS algorithm
1: procedure DFS(G) . Performs DFS on Graph G
2: for each v ∈ V do
3: visited[v] = false
4: for each v ∈ V do
5: if !visited[v] then
6: // Generate new label
7: label[v] = newlabel
8: EXPLORE(v)

Algorithm 2 DFS explore
1: procedure EXPLORE(v)
2: // explores connected component of current vertex
3: visited[v] = true
4: previsit(v)
5: for each edge e = (u,v) ∈ E do
6: if !visited[u] then
7: label[u] = label[v]
8: EXPLORE(u)
9: postvisit(v)

from 3.1x to 14.2x using 16 threads on real world
graphs over its sequential counterpart.

II. GRAPH TRAVERSAL

Graph traversal is a systematic way to visit its vertices.
There are several ways in which a graph traversal may be
performed: breadth-first search, depth-first search (DFS),
uniform cost search, etc. DFS is listed in in Algorithm 1.
It starts traversing the graph at a designated start vertex
root, explores its first unvisited child x, again explores
x’s first unvisited child, until a goal node is hit or there
are no more children to explore. If the goal node is hit,
the procedure may terminate (based on the application
requirements). In the other case, backtracking is used to
return to the last not-yet-fully-explored vertex.

Running time of DFS is linear in terms of the graph
size. DFS can be naturally implemented using recursion
(as shown in Algorithm 2 where function EXPLORE()
calls itself).1

DFS parallelization is challenging because the graph
connectivity could be arbitrary and cannot be predicted
a priori. For instance, if we divide a graph into two
equal parts and assign N /2 vertices to each thread, it is
unclear what label should the first vertex in the second
partition be given, as it depends upon whether the vertex
is connected to another vertex in the first partition or not.
Finding that itself would involve graph traversal!

Our parallelization technique crucially relies on a
vertex labeling scheme, which enables us to identify
some structural properties of a vertex’s neighborhood.

1However, for big real-world graphs, recursive DFS quickly grows
out of stack. So we use an iterative DFS with an explicit stack.

Figure 1. (a) An example graph and its FCFS vertex labeling (b)
The example graph represented as an edge-list (c) The same graph
with a differing ordering of the edge-list (d) The modified vertex
labeling

The labeling helps our algorithm perform load-balanced
task-distribution in a later step.

III. VERTEX LABELING

Vertex labeling is a standard procedure which takes
edge list of a graph as input and generates a label for
each vertex which has atleast one neighbor in the graph
(that is, if a vertex is part of atleast one edge in the edge
list).

A. FCFS Vertex Labeling

A First-Come-First-Served (FCFS) vertex labeling ap-
proach numbers the vertices in the range [1..|V |], where
|V | is the number of vertices in the graph. The numbers
are assigned based on the order in which the edges
are processed by the labeling algorithm (presented in
Algorithm 3). As an example, consider the graph shown
in Figure 1(a) containing six vertices, and edge-list as
shown in Figure 1(b). The vertex labels computed are
shown beside each vertex in the figure.

We use a data-structure LabelMap which is an
abstract map containing key-value pairs, where keys
are vertices and values are the labels. Based on the
application scenario, one may wish to use a different im-
plementation of LabelMap. For instance, using a binary
search tree provides an O(log2n) lookup-time, whereas
a minimal-collision hash-table may provide a constant-
time lookup.

The FCFS labeling algorithm goes through the follow-
ing steps for the example in Figure 1.

1) As v1 is not present in LabelMap we map v1 to 1
and since v2 is not in LabelMap we map v2 to 2.

2) As v3 is not present in LabelMap we map v3 to 3
and since v4 is not in LabelMap we map v4 to 4.

Algorithm 3 LABEL
1: procedure LABEL(EdgeList E)
2: // Labels the vertices based on edges information
3: // Edge List contains edges of form (u, v)
4: // LabelMap maps each vertex to a label
5: counter = 0;
6: for each edge e = (u, v) ∈ E do
7: if !LabelMap.hasKey(u) then
8: // Generate new label for u
9: LabelMap.put(u, ++counter)

10: if !LabelMap.hasKey(v) then
11: // Generate new label for v
12: LabelMap.put(v, ++counter)

3) As v5 is not present in LabelMap we map v5 to 5
and since v2 is in LabelMap we skip it.

4) As v3 is in LabelMap we skip, and since v8 is not
in LabelMap we map v8 to 6.

5) As v1 is in LabelMap we skip, and since v8 is in
LabelMap we skip.

6) As v2 is in LabelMap we skip, and since v4 is in
LabelMap we skip.

We may not label vertices with zero degree. The
labeling above is very naı̈ve and it cannot exploit the
neighborhood structure. FCFS labeling may result in
arbitrary labels to the graph vertices depending upon the
edge-order in the input.

B. Our Approach: Clustered Labeling

In our approach, we cluster the edges and then reuse
the existing FCFS ordering to result into an improved
labeling. If the edges are given in such a way that all
edges corresponding to a vertex are clustered together in
the input then we can generate a better labeling. Thus, if
a vertex vi gets a label k and if vi has m neighbors then
all the labels of the neighbors will be in the range k+1 to
k+m. Using such a clustered labeling has the advantage
that we can clearly differentiate whether any particular
target vertex falls into the current neighborhood by
simply checking whether currentlabel + maxdegree of
graph ≥ target label. This property forms the basis for
our load-balanced DFS traversal.

For instance, consider an alternate edge ordering as
shown in Figure 1(c). Here, the edges are clustered
according to the source node ids. The FCFS labeling
on this ordering results in the vertex labels as shown
in Figure 1(d). Note that unlike the FCFS labeling, the
clustered labeling mostly follows the connectivity of the
vertices. Thus, for instance, neighbors of vertex v1 are
labeled 2 and 3, while vertices v5 and v3 are labeled
away from the label of v1. Clustered labeling helps us
achieve better load balancing for parallel execution.

Algorithm 4 ParallelTraverse
1: procedure PARALLELTRAVERSE(Graph G)
2: Compute Clustered Labeling
3: Compute LoadBalanced Indices
4: P = Runtime.availableProcessors();
5: for i in 1..P do
6: // DFSTask is an instance of Thread
7: DFSTask i = new DFSTask();
8: //set Thread i to start at loadbalanced index i
9: i.setStart(loadbalanced[i]);

10: i.start();
11: // Wait for all threads to finish

Algorithm 5 Per thread processing
1: procedure RUN()
2: // This method is invoked by each thread
3: // independently
4: // Start DFS procedure at specified start index
5: // Assign next unique label
6: label[start] = nextUniqueLabel()
7: dfs(start);
8: while unvisitedVertices.size() > 0 do
9: v = nextUnprocessedVertex()

10: label[v] = nextUniqueLabel()
11: DFS(v);

IV. ALGORITHM FOR LOAD BALANCED DFS

Once the vertices are labeled, we can start the parallel
DFS execution. One naı̈ve way to parallelize DFS is
by assigning each unvisited vertex to a new thread.
Unfortunately, this confines threads to the same region of
the graph – increasing the synchronization requirements.
It would be ideal to be able to divide the graph into
chunks and assign each chunk to a thread. We calculate
the load factor based on the number of vertices in
the graph |V | and the number of processing elements
(threads) available P . Thus, we assign |V |/P number of
vertices to each thread achieving an almost perfect initial
load-balancing.

Algorithm 4 shows the overall processing of the
master thread. It first computes the clustered labels as
discussed in Section III-B, and then finds partitions of the
input graph to be processed by threads. It then invokes a
worker from the thread-pool on each of the partitions
(for-loop in Algorithm 4). Each thread executes the
procedure listed in Algorithm 5. For the graph partition
assigned to the thread, each worked thread starts DFS at
the first node in the partition. Each unvisited vertex is
assigned a new unique label.

Algorithm 6 lists the DFS traversal using an explicit
stack (for memory efficiency and performance). It is
similar to the standard DFS except for assignment and
management of vertex labels. If vertex vi has been
assigned a label li and suppose we are able to reach
vi from vertex vj with label lj while performing dfs,

Algorithm 6 DFS traversal
1: procedure DFS(v)
2: //Start DFS procedure at the specified start index
3: Stack stack;
4: stack.push(v);
5: while !stack.empty() do
6: curr = stack.pop();
7: visited[curr] = true;
8: for each neighbor w of curr do
9: if !visited[w] then

10: visited[w] = true; . Early marking
11: //Avoids other threads pushing
12: //this vertex to their stacks
13: labels[w] = labels[curr];
14: stack.push(w);
15: if visited[w] then . Merge Labels
16: // visited before curr is visited
17: // Merge labels
18: L1 = labels[w]
19: L2 = labels[curr]
20: labelEquivMap[L1].add[L2]

Algorithm 7 Merging of vertex labels
1: procedure LABELMERGE()
2: // Merge equivalent labels after DFS
3: WeightedQuickUnionPathCompressionUF uf;
4: for label in labelEquivMap.getLabels() do
5: for otherLabel in labelEquivMap[label] do
6: uf.union(label, otherLabel);
7: // Now unique labels refer to final
8: // number of connected components

we merge the two labels (Line 20 of Algorithm 6). This
signifies that all the vertices in the connected component
of vi will also be in the connected component of vj .

Procedure LabelMerge (listed in Algorithm 7) is used
to unify equivalent labels using union-find data structure.
The implementation is optimized by performing union
by size and path-compression. After merging all the
equivalent labels, the number of unique labels determines
the number of connected components in the input graph.
We also optimize our parallel implementation with early
marking of vertices (Line 10) within stack; it prevents the
same branches of vertices being visited by other threads,
which gives considerable improvement in running time,
and also reduces the number of labels generated. Similar
to other parallel and incremental DFS algorithms, our
parallel DFS does not guarentee that the visiting order
would be the same as in the sequential DFS. However,
it guarentees to generate a valid DFS spanning tree of
the input graph.

V. APPLICATIONS

Effective parallelization of DFS improves performance
of several graph applications. In particular, we have
applied our proposed approach to improve the query
times for reachability, path queries, computation of the

number of connected components and the size of each
connected component.
Connectivity. Once our DFS traversal is performed, we
can answer reachability queries in O(1) time. If we
wanted to test whether two vertices u and v are con-
nected in the input graph, we simply need to check the
labels assigned to them by the parallel DFS procedure. If
both the labels are equivalent then u and v are connected,
else they are guaranteed to be in different components.
This is because, if they are connected, at some point
during the traversal in Algorithm 6, the labels would be
propagated from u to v (or vice versa) invoking the label
merging at Line 20. On the other hand, if there were no
connectivity between u and v, their initial and final labels
would continue to remain different, as their labels would
never be merged.
Connected Components. Our DFS traversal maintains
unique labels for each connected component. The main-
tenance is achieved using an optimized union-find data
structure. Thus, the number of connected components
can be easily deduced as the number of unique labels at
the end of the traversal.
Size of Connected Components. Efficient maintenance
of union-find data structure necessitates union-by-size,
which requires tracking the size of each component.
The counts are added on a label merge. Thus, our data
structure directly has each connected component’s size,
which can be returned for a label (or a vertex).
Path Queries. To answer path queries, we maintain
parent information for each vertex in the DFS tree. Thus,
if the query is to find a path between vertices u and v,
we first check if u and v are in the same connected
component, and if yes, then traverse their parents to
check for the possibility of a path between them.

VI. EXPERIMENTAL EVALUATION

We evaluated our parallel DFS algorithm on a 64-
bit Intel(R) Xeon(R) 32-core CPU with 2.60 GHz clock
and 100 GB RAM running CentOS 6.5 with 2.6.32
kernel. We experimented with several real world graphs
from SNAP dataset [8], listed in Table I. We also used
a synthetic tree input, as trees are more amenable to
effective parallelization. The graph sizes range over three
orders of magnitude. We present results as an average of
ten independent runs on each graph.

Figure 2 shows the speedup achieved by our parallel
DFS over the sequential DFS on our set of input graphs.
We observe that DFS is amenable to parallelism using
our load-balancing methodology. e.g., for AS-Skitter
graph, our parallel DFS achieves a moderate speed-up of

Graph #Vertices #Edges
roadNet-CA 1,965,206 5,533,214
com-Youtube 1,134,890 2,987,624
CA-AstroPh 18,815 396,160
AS-Skitter 1,696,415 11,095,298
roadNet-PA 1,088,092 3,083,796

Tree 1,000,000 999,999
CA-CondMat 23,133 93,497

Table I
INPUT GRAPHS

Figure 2. Speedup over sequential

7.8 using 16 threads. This is due to better load-balancing
and less overheads in terms of task-scheduling.

Figure 3 shows the number of labels generated by
the algorithm on various input graphs. In practice, the
number of labels depends both on the size of the graph as
well as the connectivity. We observe that the number of
lables is influenced by the graph size. For our graph with
the highest number of edges (AS-Skitter with 11 million
edges), the number of labels generated is considerably
large (over 1000). The divide-and-conquer algorithm

Figure 3. Number of labels generated

is amenable to generating a large number of labels.
This also explains why the number of labels generated
increases with the number of threads. However, early
marking technique (see Algorithm 6) diminishes the
danger of label explosion. Reduction in the number of
labels leads to fewer concurrent accesses and updates to
the underlying map used for maintaining the labels. This
helps improve performance. On the other hand, larger the
number of labels, the graph is more amenable to parallel
processing.

VII. CONCLUSION

In this work, we demonstrated a practical way to
parallelize DFS traversal by clustered labeling, which
allows load-balanced task-distribution across workers.
We illustrated that the parallel DFS performs much
better compared to its sequential counterpart achieving
an speedup in ranges of 3.1x to 14.2x using 16 threads
on different real world graphs. We also showed how
several graph applications such as finding connected
components, path querying get benefitted by improving
DFS running time. In future, we would like to explore
more graph applications to assess its effectiveness.

REFERENCES

[1] J. Reif, “Depth-first search is inherently sequential,” Information
Processing Letters, vol. 20, no. 5, pp. 229–234, 1985.

[2] T. Hagerup, “Planar depth-first search in o(log n) parallel time,”
SIAM J. Comput., vol. 19, no. 4, pp. 678–704, Jun. 1990.
[Online]. Available: http://dx.doi.org/10.1137/0219047

[3] A. Aggarwal and R. Anderson, “A Random NC Algorithm for
Depth First Search,” in Proceedings of the Nineteenth Annual
ACM Symposium on Theory of Computing, ser. STOC ’87.
New York, NY, USA: ACM, 1987, pp. 325–334. [Online].
Available: http://doi.acm.org/10.1145/28395.28430

[4] R. Jones, A. Hosking, and E. Moss, The Garbage Collection
Handbook: The Art of Automatic Memory Management, 1st ed.
Chapman & Hall/CRC, 2011.

[5] P. Varman and K. Doshi, “Improved Parallel Algorithms
for the Depth-first Search and Monotone Circuit Value
Problems,” in Proceedings of the 15th Annual Conference
on Computer Science, ser. CSC ’87. New York, NY,
USA: ACM, 1987, pp. 175–182. [Online]. Available: http:
//doi.acm.org/10.1145/322917.322945

[6] Y. H. Tsin, “Some Remarks on Distributed Depth-first Search,”
Inf. Process. Lett., vol. 82, no. 4, pp. 173–178, May 2002.
[Online]. Available: http://dx.doi.org/10.1016/S0020-0190(01)
00273-3

[7] A. Laarman, R. Langerak, J. Van De Pol, M. Weber,
and A. Wijs, “Multi-core Nested Depth-first Search,” in
Proceedings of the 9th International Conference on Automated
Technology for Verification and Analysis, ser. ATVA’11. Berlin,
Heidelberg: Springer-Verlag, 2011, pp. 321–335. [Online].
Available: http://dl.acm.org/citation.cfm?id=2050917.2050942

[8] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large
network dataset collection,” http://snap.stanford.edu/data, Jun.
2014.

